Technology-Enabled, Rapid-Response Fresh Food Supply Chains (TERRa-Fresh) Workshop on Planning Tools

Facilitated by Omar Ahumada and Paul Gutierrez

Agenda

9:50 AM: Introduction to planning of the fresh agricultural supply chain, Omar Ahumada

10:05 AM: Current planning tools in TERRa-Fresh, Rodrigo Ulloa

10:20 AM: Parameter setting, Rodrigo Ulloa

10:30 AM: Representative Farms formation and Pilot Implementation Paul Gutierrez, Patty Emmert

10:40 AM: Open discussion

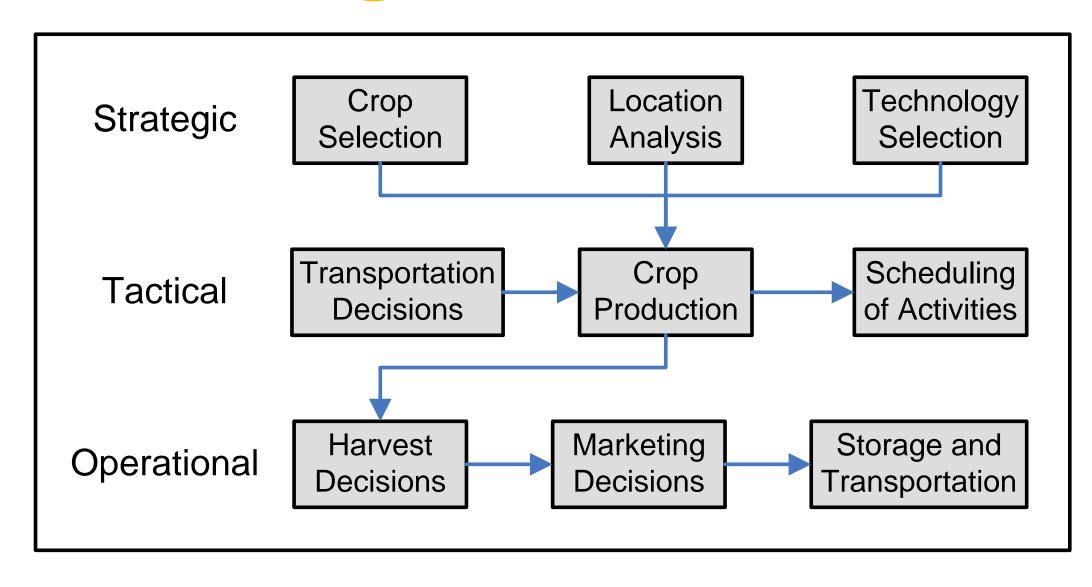
Introductions

Omar Ahumada
Professor of Agribusiness
Universidad Autonoma de Occidente

Paul Gutierrez
Professor Agricultural Economics
New Mexico State University

Rodrigo Ulloa Ph.D. Candidate, Industrial Engineering Arizona State University

Vision


Our aim is to develop a set of planning tools that will support the decision-making process required for the articulation of Fresh Produce Supply Chains. These tools will assist the whole process, from the selection of **crops** and **production regions**, to the delivery of the produce to the costumers.

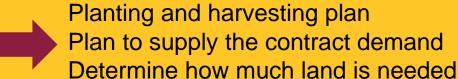
Planning Tools Overview

Fresh Agricultural Products:

- High production costs
- High labor requirements
- Uncertain production
- Limited shelf life
- Risky Market
 - Price unknown
 - Variable demand
- Decisions are taken before any knowledge of the demand, price and production → Planning a must

Planning Tools Overview

Current Planning Tools


Model 1: Land Allocation Tool

Perspective of a single grower
Single location
Up to 7 crops
Demand based on expected prices

Model 2: Contract Response Tool

Perspective of the SC articulator/buyer
Single location
Up to 7 crops
Demand based on a contract and expected prices

Model 3: Contract Response Tool (multi-location)

Perspective of the SC articulator/buyer
Up to 6 locations
Up to 7 crops
Demand based on a contract and expected prices

Planting and harvesting plan
Plan to supply the contract demand
Determine needed land in each region
Takes advantage of complementary regions

Current Planning Tools

Model 1: Land Allocation Tool

Perspective of a single grower
Single location
Up to 7 crops
Demand based on expected prices

Planting and harvesting plan
Allocates available land to selected crops

Model 2: Contract Response Tool

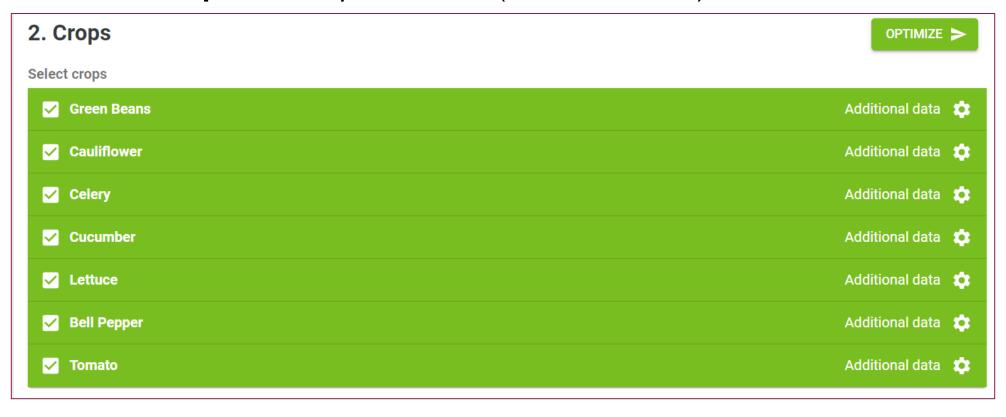
Perspective of the SC articulator/buyer
Single location
Up to 7 crops
Demand based on a contract and expected prices

Planting and harvesting plan
Plan to supply the contract demand
Determine how much land is needed

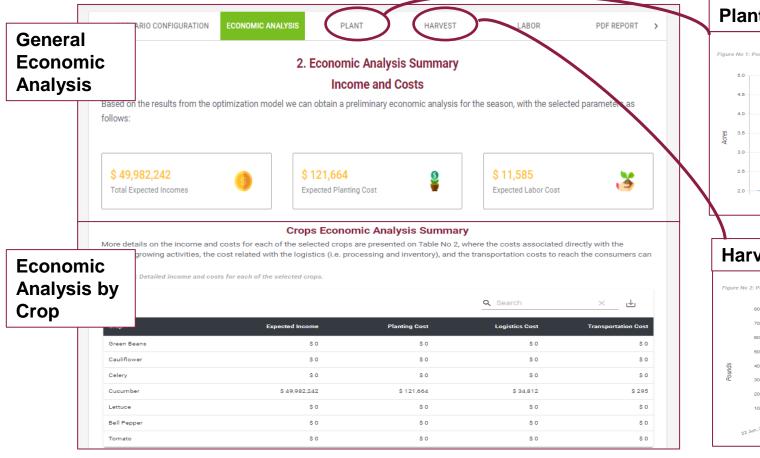
Model 3: Contract Response Tool (multi-location)

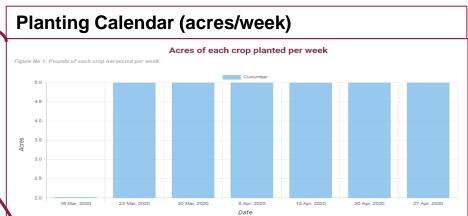
Perspective of the SC articulator/buyer
Up to 6 locations
Up to 7 crops
Demand based on a contract and expected prices

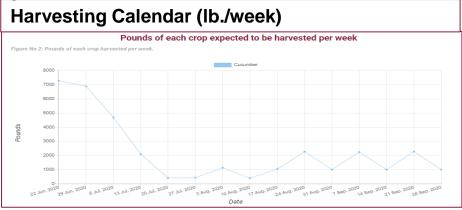
Planting and harvesting plan
Plan to supply the contract demand
Determine needed land in each region
Takes advantage of complementary regions


Model 1: Land Allocation Tool

Step 1: Select the Location and its parameters

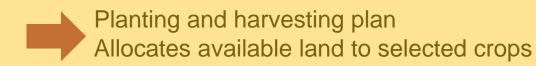

Model 1: Land Allocation Tool


Step 2: Select the Crops and its parameters (additional data)

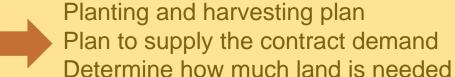


Model 1: Land Allocation Tool

• **Step 3**: Run the Optimization to obtain the results. Here some examples of how it looks:



Tactical Planning Models


Model 1: Land Allocation Tool

Perspective of a single grower
Single location
Up to 7 crops
Demand based on expected prices

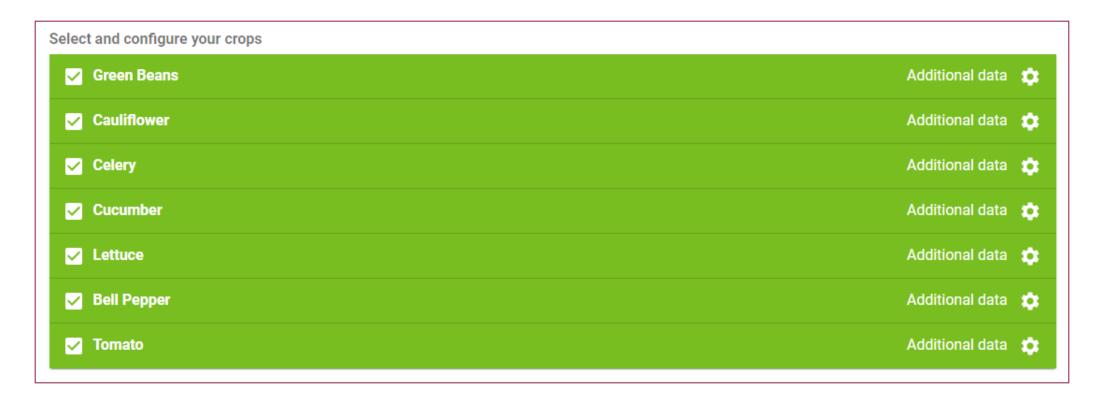
Model 2: Contract Response Tool

Perspective of the SC articulator/buyer
Single location
Up to 7 crops
Demand based on a contract and expected prices

Model 3: Contract Response Tool (multi-location)

Perspective of the SC articulator/buyer Up to 6 locations Up to 7 crops

Demand based on a contract and expected prices



Planting and harvesting plan
Plan to supply the contract demand
Determine needed land in each region
Takes advantage of complementary regions

Step 1: Select Planning Week and Locations

1. Select week Select week Week 44 of October 2020 Select week to plant
2. Locations
Select and configure your locations
☐ Albuquerque, NM
Aspen, CO
☐ Las Cruces, NM
☐ Phoenix, AZ
☐ Tucson, AZ
☐ Yuma, AZ

• Step 2: Select the Crops and its parameters (additional data)

• Step 3: Upload the Contract (format sample available)

Contracts			Q Search	×
Weeks	Сгор	Customer	Demand 2	Price
15	BNS1	SP	223	35
15	CAUL1	SP	150	35
15	CEL1	SP	100	35
15	CUX1	SP	131	35
15	LET1	SP	158	35
15	PEP1	SP	152	35
15	TOM1	SP	154	35
16	BNS1	SP	232	35
16	CAUL1	SP	150	35

Step 3: Run the Optimization to obtain the results. Here some examples of how it looks:

General Economic Analysis

Economic Analysis by Location

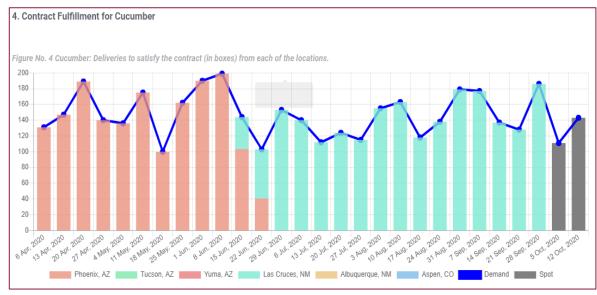
Location	Expected Income	Planting Cost	Processing and	Transportation	Income / Acre	Profit / Acre
25020011		· ·-····· 3	Inventory Costs	Cost	(\$/acre)	(\$/acre)
Albuquerque, NM	\$ 1,352,127	\$ 13,096	\$ 505	\$ 47	\$ 675,343	\$ 668,526
Aspen, CO	\$ 744,810	\$ 18,889	\$ 313	\$ 29	\$ 155,565	\$ 151,548
Las Cruces, NM	\$ 6,298,835	\$ 27,495	\$ 3,148	\$ 291	\$ 631,272	\$ 628,172
Phoenix, AZ	\$ 2,516,098	\$ 16,591	\$ 1,238	\$114	\$ 428,969	\$ 425,910
Tucson, AZ	\$ 1,525,392	\$ 16,292	\$ 567	\$ 52	\$ 434,422	\$ 429,606
Yuma, AZ	\$ 878,999	\$ 7,397	\$ 433	\$ 40	\$ 348,783	\$ 345,661

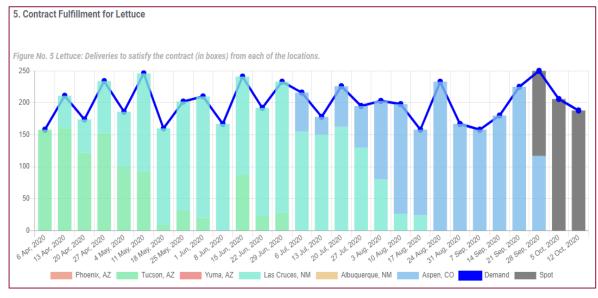
Table No 2: Detailed income and costs for each crop.

• **Step 3**: Run the Optimization to obtain the results. Here some examples of how it looks:

Economic Analysis by Crop

Сгор	Expected Income	Planting Cost	Processing and Inventory Costs	Transportation Cost
Green Beans	\$ 2,639,206	\$ 17,793	\$ 1,649	\$ 152
Cauliflower	\$ 1,067,500	\$ 6,377	\$ 411	\$ 38
Celery	\$ 1,295,000	\$ 8,284	\$ 499	\$ 46
Cucumber	\$ 3,097,215	\$ 12,637	\$ 1,649	\$ 152
Lettuce	\$ 1,732,850	\$ 10,716	\$ 659	\$ 61
Bell Pepper	\$ 1,836,690	\$ 10,291	\$716	\$ 66
Tomato	\$ 1,647,800	\$ 33,662	\$ 622	\$ 57


Step 3: Run the Optimization to obtain the results. Here some examples of how it looks:


Land Usage at each Location

Location	Land Recommended (Acres)
Albuquerque, NM	2.00
Aspen, CO	4.79
Las Cruces, NM	9.98
Phoenix, AZ	5.87
Tucson, AZ	3.51
Yuma, AZ	2.52

• **Step 3**: Run the Optimization to obtain the results. Here some examples of how it looks:

Contract Fulfillment for each crop, from the different locations

• Step 3: Run the Optimization to obtain the results. Here some examples of how it looks:

Planting
Calendar for
each Location
(acres/week)

4. Recommended Planting Decisions to Las Cruces, NM

One of the main outcomes of the optimization model, based on the selected parameters, is the plating calendar for the season. This corresponds to how the available land should be allocated, in particular the model provides a recommendation on how many acres of each product should be planted each week of the planting season.

Land Allocation

The summary of the total acres planted for each crop is presented in Chart No 1 and Table No 1 below, with the percentage of the land that is allocated to each of these products. Below, in Figure No 1, a planting calendar by week is presented indicating how many acres are recommended to be planted during the planting season. Table No 3, shows the detailed planting calendar for each of the crops.

Chart No 1: Land allocation distribution to each crop.

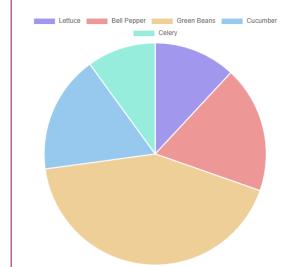


Table No 1: Summary of planted acres per crop.

Сгор	Total Acres Planted	Percentage of Land Used
Lettuce	1.19	11.92%
Bell Pepper	1.84	18.49%
Green Beans	4.24	42.48%
Cucumber	1.71	17.09%
Celery	1.00	10.02%

Step 3: Run the Optimization to obtain the results. Here some examples of how it looks:

Harvesting
Calendar for
each Location
(lb./week)

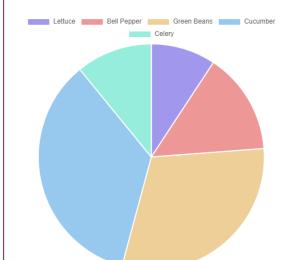
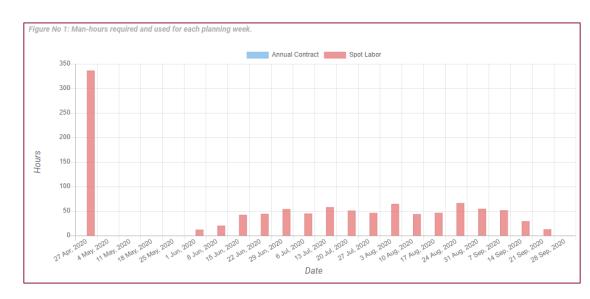
5. Expected Harvesting Volumes for Las Cruces, NM

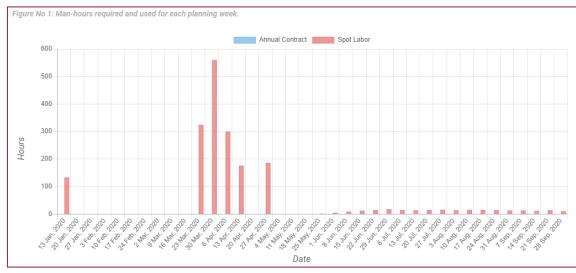
A second output of the optimization model is the expected harvesting calendar corresponding to the planting decisions recommended above. This result is detailed below, corresponding to how many pounds of each product are expected to be harvested based on the planting decisions presented in the previous section.

Expected Harvesting Volumes

The summary of the total pounds expected to be harvested for each crop is presented in Chart No 1 and Table No 1 below. Figure No 1 presents a weekly calendar that indicate how many pounds are expected to be harvested during each week of the harvesting season. These values corresponds to the expected yields of the planting decisions presented in the previous section. Table No 2 shows the detailed harvesting calendar for each crop.

Chart No 1: Harvesting volumes distribution.


Table No 1: Summary of Harvesting Volumes.

Сгор	Pounds (lb.)	Percentage		
Lettuce	23,595 lbs	9.26%		
Bell Pepper	37,046 lbs	14.54%		
Green Beans	77,404 lbs	30.39%		
Cucumber	88,929 lbs	34.91%		
Celery	27,754 lbs	10.90%		

• Step 3: Run the Optimization to obtain the results. Here some examples of how it looks:

Labor requirements for each location (planting and harvesting activities)

Parameter Setting

- All the parameters used by default are estimated values. We tried to capture most relevant parameters, but there is still some work to do in refining the parameters
- This can be changed/customized to different users:
 - Individual Growers
 - Groups of Growers
 - Agents looking for coordination (ie: a response to Farm to School Program)
 - Supply Chain Articulator

Representative Farms formation and Pilot Implementation

Representative Farms formation and Pilot Implementation

Assessment Methodology:

- Grower specific information
- Land/Climate Zone Information
- Crop Specific Information
- Financial Services and Business Practices
- Marketing Practices
- Logistic Service Provider Information
- Regulations

Grower Specific Information:

- Land Ownership and Land size
- Expertise of growers
- Business Model
- Capital Source
- Level of Association
- Infrastructure related to growing fresh produce, precooling, processing, packaging

Land/Climate Zone Information:

- Temperature
- Precipitation
- Amount of Sun Light
- Quality of soil
- Water availability
- Humidity
- Etc.

Crop Specific Information

- Production costs, labor and water requirements
- Yield Estimations
- Compatibility Requirements (Temperature and Chemical)
- Storage Requirements
- Shelf Life

Comprehensive Enterprise Analysis of Each Crop:

Carrots

Number of Crop Acrer	Total	Cost per Acre	Tota	l Crop Cost
30	\$	4,672.54	\$	140,176.05

					1				
Yield	Po	unds Per Ac	Tota	al Production					
Estimated Amount									
Harvested		7,000.00		210,000.00					Total Acres
Acre	Per A	cre	Tot	al Crop Sales	Total Cost/Operat	Per	Acre	Total	
Price per Pound	\$	1.50	\$	1.50	Land Prep Total	\$	822.87	\$	24,686.17
Gross Farmers Market Sales	\$	10,500.00	\$	315,000.00	Planting Total	\$	360.76	\$	10,822.69
Net Profit Wholsale Market	\$	5,827.46	\$	174,823.95	Cultivation Total	\$	737.47	\$	22,124.02
					Harvest Total	\$	2,751.44	\$	82,543.17
80%		60%		40%	Post Harvest Tota	\$	-	\$	-
\$ 3,727.46	\$	1,627.46	\$	(472.54)	Total	\$	4,672.54	\$	140,176.05

 Net Profit at % of Crop Sold
 80%
 60%
 40%
 Post Harvest Total
 \$ \$

 Per Acre
 \$ 3,727.46
 \$ 1,627.46
 \$ (472.54)
 Total
 \$ 4,672.54
 \$ 14

 Total
 \$ 111,823.95
 \$ 48,823.95
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)
 \$ (14,176.05)</t

Additional Questions & Open Discussion

Sponsors

Completed:

Omar Ahumada, Ph.D. Dissertation Octavio Sánchez, M.S. Thesis **Hector Flores, M.S. Thesis** Nicholas Mason, Ph.D. **Christopher Wishon, Ph.D. Hector Flores, Ph.D.**

In Progress:

Rodrigo Ulloa, Ph.D. Xaimarie Hernández Cruz, Ph.D. **Grace Neal, B.S.**

Technology-Enabled, Rapid-Response Fresh Food Supply Chains (TERRa-Fresh) Workshop on Planning Tools

Facilitated by Omar Ahumada and Paul Gutierrez

Additional Material